Oncolytic activity of the E1B-55 kDa-deleted adenovirus ONYX-015 is independent of cellular p53 status in human malignant glioma xenografts.
نویسندگان
چکیده
Treatment of malignant gliomas remains a major challenge in adults and children because of high treatment failure. The E1B 55 kDa-gene deleted adenovirus, ONYX-015 (ONYX Pharmaceuticals), was demonstrated to replicate selectively in and lyse tumor cells. Currently ongoing clinical trials of ONYX-015 in head and neck tumors are promising. Here, we demonstrate ONYX-015-mediated cell lysis and antitumor activity in three of four s.c. human malignant glioma xenografts deriving from primary tumors. Intratumoral injections of ONYX-015, 1 x 10(8) plaque-forming units daily for 5 consecutive days, yielded significant tumor growth delay in the p53 mutant xenografts IGRG88 and the p53 wild-type IGRG93 and IGRG121 treated at an advanced tumor stage. The p53 wild-type tumors IGRG93 and IGRG121 experienced 45% and 82% complete tumor regressions. Four and 8 of 11 animals, respectively, survived tumor free 4 months after treatment. Widespread intratumoral adenoviral replication was observed in tumor cells of these two xenografts compared with only scattered replication in the p53-mutant tumors. In addition to a fast tumor growth rate, wild-type p53 status was associated with increased antitumor activity of the E1B-attenuated virus, and induction of functional p53 may therefore determine adenoviral cytolysis in tumor cells. In conclusion, ONYX-015 displayed a major antitumor activity in human xenografts derived from primary malignant glioma supporting its development in the treatment of these highly malignant tumors.
منابع مشابه
Human telomerase reverse transcriptase promoter-driven oncolytic adenovirus with E1B-19 kDa and E1B-55 kDa gene deletions.
We constructed an oncolytic adenovirus, Adeno-hTERT-E1A, with deletions of the viral E1B, E3A, and E3B regions and insertion of a human telomerase reverse transcriptase (hTERT) promoter-driven early viral 1A (E1A) cassette that confers high transcriptional activity in multiple human tumor cell lines. The oncolytic potential of Adeno-hTERT-E1A was characterized in comparison with that of the E1B...
متن کاملReplication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells.
The 55-kDa E1B protein of adenovirus, which binds to and inactivates the tumor suppressor protein p53, is not expressed in the adenoviral mutant termed ONYX-015 (i.e., dl1520). It was reported that the mutant virus due to a deletion in E1B is able to replicate only in cells deficient for wild-type p53. Accordingly, dl1520 is currently being evaluated as a potential tool in the therapy of p53 de...
متن کاملHeat shock phenocopies E1B-55K late functions and selectively sensitizes refractory tumor cells to ONYX-015 oncolytic viral therapy.
ONYX-015 is an E1B-55K-deleted adenovirus that has promising clinical activity as a cancer therapy. However, many tumor cells fail to support ONYX-015 oncolytic replication. E1B-55K functions include p53 degradation, RNA export, and host protein shutoff. Here, we show that resistant tumor cell lines fail to provide the RNA export functions of E1B-55K necessary for ONYX-015 replication; viral 10...
متن کاملIn vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy.
The E1B-deleted, replication-competent ONYX-015 (dl1520) adenovirus was originally described as being able to selectively kill p53-deficient cells due to a requirement of p53 inactivation for efficient viral replication. This hypothesis has become controversial because subsequent in vitro studies have demonstrated that the host range specificity of ONYX-015 is independent of p53 gene status. Us...
متن کاملReplication of an E1B 55-kilodalton protein-deficient adenovirus (ONYX-015) is restored by gain-of-function rather than loss-of-function p53 mutants.
ONYX-015 (dl1520) is an E1B 55-kilodalton protein-deficient replicating adenovirus that is currently in clinical trials as an antitumor agent. On the basis of the observation that the E1B 55kD gene product is able to bind to and inactivate p53, ONYX-015's mechanism of action is proposed to involve selective replication in and killing of p53-deficient cells. While its efficacy as a therapeutic a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 62 3 شماره
صفحات -
تاریخ انتشار 2002